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1. INTRODUCTION

th
Given a positive number q<<l let Xq denote the (upper) q quantile

of a random variable X, defined by P(X>x )=q. In a previous report (Breiman,-q

Stone and Gins [2]) a number of point estimators of Xq based on a random

sample of size n from the distribution of X were studied. The main purpose

of the present research is to develop and study the performance of several

confidence interval procedures for Xq based on the sample, especially when

q=l/n. This work is reported on in Section 2. In Subsection 2.1.1, modifi-

cations of one of these procedures are developed for handling grouped data,

which contain many ties, satisfactorily. A detailed discussion of the

quadratic tail procedure, described in Subsection 2.3, is given in Section 3.

In Section 4 the behavior of the exponential tail estimator is studied when

the sample data is stationary but dependent. The selection of procedures

for consideration has been guided by the dictum of DuMouchel and Olshen [3]

that one should "let the tails of the data speak for themselves."
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2. CONFIDENCE INTERVALS FOR EXTREME QUANTILES

Let X denote a random variable whose (unknown) underlying distribution

function F is continuous on (- ,o) and strictly increasing on an interval

I which contains the support of F [i.e., which is such that P(XEI)=I]. Let

S(x), x>O, be the tail (survival) probability function defined by

S(x)=P(X>x)=l-F(x). For O<q<l let xq denote the (upper)qth quantile of X

defined by

S(xq) = l-F(xq) = P(X>xq) = q

Let X,...,9Xn denote a random sample of size n from F and let

X(1),...,X(n) denote the corresponding order statistics defined so that

X(1)>...>X(n). A confidence interval procedure for Xq is an interval

T = [x ,q], where x e~q with both X and x being functions of X
;-q q - q wt h2q q l'-Xn)

The length of III of the interval I is given by I = q-Xq.

Let P F and E F denote probabilities and expectations when F is the

distribution function of X. Relevant characteristics of the confidence

interval procedure include PF(Xq<I), PF(Xq>T), PF(XqJT) = PF(Xq<T) + PF(Xq>T),

and EFIII. (Here xq<T and Xq>I mean respectively that Xq<Xq and Xq>Xq.) The

goals of making the indicated probabilities and expected length both small

over a wide range of F's are obviously in conflict with each other.

One approach to obtaining a confidence interval procedure is to start

out with a realistic model F(-;e), eE(8®, for F, express xq as a function X ()
q q

of the unknown parameter 6, and then employ a classical parametric confidence
interval procedure for x q(). Given O<<l, suppose T is (at least approximately)

a classical 100(l-al% confidence interval based on the assumed model; i.e., that
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where P, = P F(.;)" Then roughly speaking, PF(xqOT) - a for any F which

can be globally well approximated by F(.;8) for some ee(2). Otherwise

PF(XqJ]T) can be substantially larger than a. This is true in particular

for F's whose central portion and extreme upper tail are best approximated

by distribution functions F(.;e) with significantly different values of 6.

Relative to such F's the confidence interval procedure is not robust vis

a vis

PF(xqlT) _ . (2.1)

There are two ways of making such a confidence procedure more robust:
(1) Consider a higher dimensional model F(.;e,t), (G,T)c)xT (e.g., a three-

parameter instead of a two-parameter lognormal model). A wider range of

distribution functions F can be globally well approximated by a distribution

function in this larger model. (2) Base the confidence interval procedure

on only the upper m order statistics X(1 ),...,X for some m<n, rather than

on all the original data. Both (1) and (2) lead to procedures which are more

robust vis a vis Eq. (2.1). Unfortunately they also both lead to significant

increases in EF T

Robustness vis a vis Eq. (2.1) here is with respect to departures of F

from the assumed model. Another type of robustness, when F belongs to the

assumed model, is with respect to errors in measuring or recording the sample

data; this type of robustness will not be considered in the present report.

11
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[Note that (1) and (2) above can lead to procedures which are less (not more!)

robust with respect to measurement and recording errors.]

Understandability and ease of implementation are important additional

considerations in determining which procedures to use.

So far, confidence intervals I=I(q) have been considered for quantiles

Xq, O<q<l. It is also desirable to consider confidence intervals J=J(x) for

tail probabilities S(x)=l-F(x), - <x<-. There is a natural one-to-one

correspondence between confidence intervals for Xq and these for l-F(x)

given by 7(x)={q:xT(q)} and T(q)={x:qeJ(x)}. This correspondence preserves

coverage probabilities. That is,

P F(xq EI(q)) = PF(qJ(xq))

and

PF(l-F(x)eJ(x)) = PF(xl.F(x)&T(I-F(x) )) if O<F(x)<l

Because of this close correspondence between confidence intervals for quantiles

and those for tail probabilities it was decided to devote the present research

effort exclusively to confidence intervals for quantiles.

Three confidence interval procedures will be described in Subsections 2.1

through 2.3. (The procedure described in Subsection 2.3 will be elaborated

on in Section 3.) A Monte Carlo experiment designed to compare the performance

characteristics of these procedures will be discussed in Subsection 2.4.

Tentative conclusions drawn from the results of this experiment and suggestions

for further work are presented in Subsection 2.5.
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2.1 TWO-PARAMETER EXPONENTIAL PROCEDURE

Consider the two-parameter exponential model

F(x;T,a) = e -  )/a

= O, X<T,

where Tr:(--,-) is a location parameter and a>O is a scale parameter.

Correspondingly

S(x;-r,a) e " xT)/a, X>T,

1 1, X<T,

and

Xq = T+a log(l/q), O<q<l

The two-parameter exponential model is appealing for several reasons.

First, it is very simple and leads to the above simple formula for xq.

Second, the upper tail of distributions of this type can be used to provide

reasonably accurate approximations to the upper tail of a number of commonly

assumed alternative models--Weibull, gamma, and lognormal. Third, the upper

tail of distributions of this type is realistic in many applications (see,

e.g., Breiman, Gins, and Stone [1]).
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Given 2<m<n, let X(I) .... (m) denote the upper m order statistics

based on a random sample of size n from F(-;T,a). The joint density of these

random variables is given by

fx (X "'" -- 'Xm ( l . .Ixm ;T'IJ)

nk - eI (xiXm )/a m(Xm-T)/a [ e (Xm_(T )/a n-m

for -<x m<... <xI while f (l),...,X(m)(xl,...,xm ;r,a)=O otherwise. The

maximum likelihood estimators of T and a based on X(1 ),...,X(m) are given by

a= [ X M)X (m)

and

r X(m) -a log 2

The corresponding maximum likelihood estimator of x q is given by

-q - - 1 Xm - in
x T + a log- = X + a log -

qq (i)nq

This estimator, with a replaced by

a m--1 i )m-Ia =  [X(i,-X m]

IL
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was studied in detail in Breiman, Stone, and Gins [2], where it was referred

to as the exponential tail estimator. Considering its simplicity, it is

surprisingly robust to moderate departures of the upper tail of F from the

assumed exponential form.

A confidence interval procedure for xq will now be obtained. To this

end set Yi =X(i)-X(m) for l<i<m-l. Then

fiY .... Ym-i 'X(m) (Y9 ." " m-I'Xm; 'a)

rn-I

n. a-m -I yi/a -m(x m- r)/a -(xm--r)/a n- m

a .a e 1 e -e

for x >T and 0<ymi ... <y. , while fYl' ' (m)(y, 'm-lXm;T'a)=O

otherwise. Let Z1 .... Zm_ 1 be independent random variables having the

common exponential density f defined by

fz I  1 e-/a
f (z) a e-z , z>o

= 0, z<O

and suppose that Z1 ... 9Zm- l X(m) are independent random variables. Let

Z(1 .... Z(m-l) be the order statistics from Zl , . . . ,Z m I , defined so that

Z(1)>... >Z(m_I ). Then Z(1),...,Z(mI),X(m) has the same joint distribution

L --.. - " • ... . . . ... ...... i n.. ....... .... ....
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as Yl. ... Y MlX (m)* Consequently Y ..+ rn-i is independent of X(M and

has the same distribution as

Z(I +. .+ (rn-i) = Z1+...Z -

namely the gamm~a distribution having density g(-;m-i,l/a) defined by

a-1 (rn-i).

=0 t<0

Therefore a has the gamma distribution with density g(-;(m-l),(m-l)/a). The

density of X (n is given by

f (x;t,a) n. e -m(xt)/a eixt-)/a] -

(i) (mT-l)!(n-m) a e [1 e

for x Tand f (M (x;z,a)0O for x<-r. The distribution function of X ()is

given by

Fx (x;t,a) 1- l~(x-T)/a ;m,n-in+l)

where

B(p;m,n-nil) = i in i) r l- r) - dr



Let -<M<-c. Since X~m and a are independent, for --<z<-

P(T+Ma<X (i) + a

=f PTra(X (in)j+Ma-zt)f%(t;T~a) d
0

fJB(e--Mezt ;i,n-n+l)g(t;n-1,rm-1 ) dt

Now x q T + a log(1/q), so that

Given Q<a<l, define z.= z (q;rn,n) by

f0B(qeZct;,n-in+1 )g(t;m-1 mi-1 ) dt = a -(2.2)
0

Then

(in X +z a for -00<-r<o and a > 0 . (2.3)

Set x-=X +z a , a and I=[2 q]* By Eq. (2.3)
-~ (mn) ct!2 a,+l(c/

PTa(x d) a for -- <T<- and a > 0
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In other words, T is a classical 100(1-a)% confidence interval for xq within

the context of the two-parameter exponential model. It is called the two-

parameter exponential confidence interval procedure. The procedure is location

and scale invariant. That is, if X(l) ,....X(m) are replaced by d+bX(1),*...d+bX(m)

with b>O, then the left and right end-points x and x of f are replaced by
q q

d+bx and d+bXq' respectively.

Formula (2.3) and hence the confidence interval procedure I have a

generalized Bayesian interpretation. To see this, let 7r denote the generalized

prior density on ( -,-)x(O,-) defined by n(T,a)=l/a. The corresponding

posterior density is defined by

Tr(',aIxI  ...,xm)

Tr(-c a ) . . X m x l. .I T a

ffwr(T,a) f X(1),...,X(m)(X 1 l .... Xm ; T, a) dT da

l _ Im (xiX )/a -m(x m-T)/a -(Xm-Tr/a 
n-m

al m e 1 i n )/ ee

0al-e-l(xi-xm)/ada e -m(Xm-r)/a[-(x
m --)/a] nm

0

for -T < xm and

(,a Ixl .... Xm) = 0 for T > xm

(It is understood here that xl>...>x .)

_____
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Let T and a denote random variables having joint density I(T,alx I .... ,xm).

Then the marginal density Tra(aIxl; ... ,xm) of is given by

aTr(a Ixl...,xm)

foda fw(ra I X1 ,. Xm) dt
a^

: - g (;m-l sm-I

where a = (Nxi-Xm)/(m-1) and g(';m-l,m-1) is a gamma density as defined

above. The conditional density ir_, (-ra;xI,... ,xm) of given = a is

obtained as

7Tr(ra x1 ,... ,Xm) d

da 1T,alxl,. xm) dr

a 2- e-(m9 (a 
1 -(X -' ~ -

= (m-1) (n-m) 1 a ee

fort < xm and a(r ;xI,...,Xm) = 0 for t >x m .

Tr(lL - x . ......

...... Tr(m/ T ,,I, . ... ,,, M) ........ .
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Set ,~ em and note that =xm + log k. The conditional

density 7r j (pla;xl,...,x ,) of p given a =a is obtained as

T paCPI1;xl,*** ,Xm)

a 7Tj (x M+a log pla;xl,... ,Xm)

n! ~M-l1 .~n-m~ for O<p'1
(m-1)!(n-m)-.P 1P

and Tra (pla;x 1,... ,Xm)=Q otherwise. Consequently the conditional distribution

function of p given a = a is obtained as

F ja(pl~l .. B(p;m,n-m+l)

For O<q<l set

=q + , log(l/q) =xm + log(kIq)

Then the conditional distribution function of xq given a, a is obtained as

(x-xm)/a
B qe ;m,fl-m+l)
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Consequently the distribution function of q is given by

F (xlx 1,... Xm)

F l x a (Xla;xl"'". Xm)7T (a lxl' ' '' ' x m )  da

= ( (XX)/ (a

= jB(q e (x-xm)/a ;m,n-m+l - g (;m-l,m-l da
0 )^

I e(x-xm)t/a d
=f Bq e (x t/a;m,n-m+l )g(t;m-l,m-l) dt

0

Therefore

F x(xm+z L3x,...,xm) =

where z is defined by Eq. (2.2). This yields the generalized Bayesian

interpretation of Eq. (2.3).

2.1.1 Modifications to Handle Grouped Data

In many applications XI , .... Xn are rounded up or down or grouped to

yield a small to moderate number of distinct values. This rounding or

grouping can have an adverse effect on the confidence interval procedure

described above unless the procedure is appropriately modified.

Specifically let k>2 denote a positive integer and let

-,==do0<dl<...<dk1<d k=  Fo: l<j<k let N. denote the number of sample

values in the interval (dj_ l ,dj ). Then
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=C(nl, ... n k) -T [F(d.;T,a) - F(d j 1 ;T~a)] 3

j=l i

where F( -;T,a)=O, F(o;T,a)1l, nl, ... 9nk are nonnegati-/e integers adding up

to n and

C(nl,...,nk n* *.'

If n 1>0, then

P~ To(N1=nl,..*.,N k=n k)

= .(1 .. ,k [ -(dl-)/a 1 k [(dj_-T)/a (djT)/a]

C(n1 , . , n k7 [e -( j , d)/a--( -d 1  1 J-(n-n ) (d1  - )/a [ - ( -T)/a 1

for T < d 1 and a > 0, while the indicated probability equals zero for T > d.

An approximate 100 (l-ct)% confidence interval for x q will now be obtained

by modifying the generalized Bayes derivation of T given above. Let 7T again

denote the generalized prior density on (-cn,-x)x(O,ao) defined by 7T(T,a)=l/a.

Suppose l<n 1<n. Consider the corresponding posterior density defined by
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Tr(r,aln 1 ,... nk)

Tr(T,a)PTa (NI=nl ....Nk=nk)

= 7777(T,a)P ,a(Nl=nl ... Nk=nk)] dT da

k [-(dj_l-dl)/a -(dj-dl)/a]n (n-nl)(dl-T)/a (dl-T)/ a]n1

a-krVde -e e -eaj=2

n.

2[e e a e dT da

for -r < dI and a > 0, while 7(,alnl, ... nk) = 0 otherwise. Observe that

d i e (n-nl)(dl'T)/a e"(dl- -0/a n l

t oe -(n-nl ) -(l Ie-) I T

0

1 n-nl - nI  nl (n-nl -)

= a fo p (-p)nI dp a n -

Let z and denote random variables having joint density Tr(T,alnl,...,nk).

Then the marginal density 7ra(alnl ... ,nk) is given by

Ta(alnl,...,nk)

k -(dj 1l-dl)/a-(dj-dl)/a] n j

7Te -e

J 21 (2.4)

o -k e(dj -dl)/a-(dj-dl)/ nj d

f - e da
0j=2
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The conditional density iT Zl (Tia;nl,... Ink) of given =a is obtained as

a n !-1 l e (n-n I)(dl-T)/a ~- e(di T)/ a]l

for T rSd 1, Iand Tr 1, (TI a;nl I. .. n k) = 0 for T > di.

Set =e-(dl -;)4 and note that T di + a~ log R. The conditional

desiy7rRa pa' ' '..Ink of~ a gie a is obtained as

densit ,(pap~~l an,, in

a T I(dl + a log pla;n1, ... ,nk

n!_____ n-n 1 n

n,!nnl-I.-P (l-p) for 0 < p <1

and iT RleF(p! a;nl ,... Ink ) = 0 otherwise.

The conditional distribution function of Re given a =a is obtained as
^V

F1ja (PI a;nlI. .. nk) =B(p;n-n 1,nl+l)

where B(p;a,,) is as defined above.
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For 0< q < 1 set

Xq = + log (l/q) = d1 + log (k/q)

Then the conditional distribution function of xq given = a is obtained as

F . I (xl a;n I,'".,n k )

= F , ,,( e 1 la;nl,...,nk)

= B q e ( x d ) ; n -n 1 , n  1 + 1)

Consequently the distribution function of q is given by

F x  (xln 7 l .... ink )

00f 
F x  I (xla;nl,....nk) 

(a lnil .... n k) da

: 0B q e(xd)I a ;n-n I ,nl+l Tr(a I n... nk da

where (aln I ... Ink) is given explicitly in Eq. (2.4).

Given 0 < a < 1, define x : and xq = .q fnlk*)anl) x b

(xqlnl,...,n) and F (T Inl,...,nk)
x k) xq q)
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Al so set

Then T should be a good substitute for the two-parameter exponential 100 (1-ca)%

confidence interval when the sample data are rounded or grouped. (Note that

additional rounding or grouping may be required to guarantee that 0 < N1 < n.

This provides no problem in practice, for if the requirement cannot be met,

the original rounded or grouped observations are identical and there are no

reasonable confidence intervals for xq,)

2.2 TWO-PARAMETER WEIBULL PROCEDURE

Consider the two-parameter Weibull model

F(x;t,a) 1 - e -tx  x 0

=0 , x<O

where t > 0 and B > 0. Correspondingly

tx3
S(x;t,B) e x > 0

:0 , x<0

and

x q t / log , 0 < q l
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In this model B is a shape parameter and a = t-I/B is a scale parameter.

Alternatively log a and l/a are respectively the location and scale parameters

for the distribution of log X, where X has distribution function F(.;t,S).

Given 2 < m < n, let X (l) .. X(m) denote the upper m order statistics

based on a random sample of size n from F(.;t,e). The joint density of

these random variables is given by

f X (l), .... X(m) (Xl'1 .... 9Xm;t, B)

/n _ta- _tm mm xi
n! ( - te em e I

The maximum likelihood estimators of t and $ are not easily found.

An approximate generalized Bayes confidence interval procedure for Xq

will now be obtained. Let iT denote the generalized prior density on

(O,=)x(O,) defined by ii(t,5) I/ta. The corresponding posterior density

is defined by

Tr(t, IxI  ... ,x)

r( t, 8) fx ( , ..IX m ;t,6)

ffir(t,a)f X( (xI .... ,xm;t,S) dt dS

-I /i _Bn-m m 5
mt 1 MI xi

$ mlTT xi t e e

I\

M-1M (T ) l t- 11 tx6 nm -t\- Nmx. dt_
(m-  xi) d6f - e m e- 1 i

0 0



For v> 0 and t> 0 set

g(,v,t)= tm1 (- e\)t n-m e-mt

Also set

1

Then

rn-t a i f

~ Then te m magia dei t of is
given b
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0 0

4T(t~ ax ,.,m dt

0 00

The~~~~~ codiioa dest Tr7(I~xl. aXm of X, gxve d sotanda

0 0

(tx- gt/t)/i d

"0

The corresponadns onit onatj dtrl.ibio fntin o gi obtainedis

obaie as ta~l ..2
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FTe (tO_,xi ... x i

F m

-ti 0 lgi Xl u ;Xu....x)
0 g ( t x3 , u/t ) du

For 0 < q < 1set

x :t-11q IogI

Then x < x if and only if
q-

t > x- log (1/q)

Thus the conditional distribution function of x given : is obtained as
..q

F q ,5; l ... .xm )

tI F ,(x-6 log (l/ql)6;x ], .... Xm)

The distribution function of xq can be expressed in terms of quantities

defined above according to the formula
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Fxq (Xlx I  ..... xM )

f Fx ,.- (x a;xI, ... Xm) Tr (ax l ..., x) d

Given 0 < a < 1 defined _q and xq in terms of X(I ) , .. . ,X( m) according

to the formulas F (_XqjX(l ... ,X(m)) = a/2 and Fxq(xq]X(l ) .. X(m)) = 1 - a/2.q-q (inC) x(~I()**~~)

Also set T = x qx q]. Then P ta(x q a for all t > 0 and 8 > 0. The proof

of this result, which will not be given here, depends on the observation made

at the beginning of this subsection that the two-parameter Weibull model can

be viewed as a location-scale model. The result shows that T is a classical

l00(l-c)% confidence interval for xq within the context of the model. It is

called the two-parameter Weibull confidence interval procedure. The procedure

is invariant under scale and power transformations. That is, if X(1)...,X(m)

b bare replaced by d X(1)'.... d (m) respectively with d > 0 and b > 0, the left

and right end-points _Xq and x of I are replaced by dx and dq respectively.

[To see this, observe first that

Tr(t,ald xI,...,d xm) d bTr(dt,bax I, ... xm )

and then use this equation to show that

Fx (d xbId xb b Fx (xlx .__Xq""X ) "

The confidence intervals for xq can be transformed as described in Subsection 2.1

to yield 100(1-A)% confidence intervals for S(x).
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Unfortunately the two-parameter Weibull confidence interval procedure

is not computationally feasible. To obtain an approximate version of the

procedure which is comput~tionally feasible, for v > 0 and t > 0 set

h(v,t) = log g(v,t) = (m-1) log t + (n-in) log (I-evt) - int and let h'(v,t),

etc., denote differentiation of h with respect to t. Then

h' (v,t) = 12m-l + (n-m)v-

t e Vt. I

h- I (V,t) = - m1- (n-m)v 2 e ~ < 0

t2 (e) t-1)2

and

hi! (v,t) = 2(m-1) + (n-m)v 3 evt(e~jt+l) > 0
t ~ (e Vt~l)

Thus h(v,t) has a unique maximum at to t(v) which is the unique root of

h'(,v,t) = 0. This root can be found by applying Newton's method to the

function h'(\),-).

Consider the approximation

h(\u,t) :h(v,t ) + 1 h" (\,,t )(t-t ) 2
0 2 0 0

-log g(v,t)+ h (vt)tt 2

0f ,t0X-
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Correspondingly

h" (v,to) (t-to)2/2

g(V,t) a g(v,t O) e

This can be written as

g(v,t) - C(v)N(t;t(v),
2(v))

where

a(v) : V-1/h" (v,t(v)) ,

C(,) g(v,t(,))a(v) Y ,

and N(.;p,a2 ) is the normal density with mean p and variance a2 . The approx-

imation for g in turn yields the approximations

1 1-1

and

Tr tj (tj ;x1  ... ,Xm)I N(t t ( ( ) V t2 F2( ($)))

where Z() t X.
M,

II... ... . .......... ...I Il I . ..... . "... .. . . . . 11.. ...... l ...... .. I"... II ...
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Let D denote the standard normal distribution function and set Q = 1 -

Then

S -I t-t(v(i)_

so

F x (xl ;xl '''' xm )  A Q - l o ( l (

Set

Fx (xx l ..... Xm)
..q

- f F (xIaxi9 ...XM) a . ,xm) dB

where 6 and Fx are the approximations to 7r and Fx1$ just determined.
_qL xq

Given 0 < a < 1 define Xq and xq in terms of X(1 ),...,X(m) according

to the formulas

(1),...,X(m)) = and F(, m = 1 -

Then T = [x,-q] determines the approximate two-parameter Weibull confidence

interval procedure. It is also invariant under scale and power transformations.

I l- --"
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2.3 QUADRATIC TAIL PROCEDURE

Let 3 < m < n and let X(1 ),...,X(m) denote the upper m order statistics

based on a random sample of size n from F. Set Z(x) = -log S(x) -log [l-F(x)].

Then S(x) = e-Z(x), so that

-[Z(X) -Z(X(m))
S(x) = S(X(m)) e) , x > X()

In particular, if Xq X (m), then

q = S(X(m)) [ q) (

and hence

S(Xm)
M(xq) - z(Xm) = log q

In other words, Xq is the solution to the equation

9(x) - Z(X) = y (2.5)

where y = log [S(x(m))/q]. The solution to Eq. (2.5) can be written as

x = X W + L(y) , (2.6)

where L depends on X(m) as well as the (unknown) distribution function F.

By Eq. (2.6)

Xq X(m) + L log q 0 < q < S(X(m)) (2.7)

i i
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This suggests estimates Xq of Xq having the form

Xq Xm +Lo 0 < q < S(Xm )
q i n)

It is natural to estimate S(X(m)) by S(X(m))= m/n. This leads to

Xq X(+) + 1og 0 < q < n (2.8)

Consider for example a distribution function F belonging to the two-

parameter exponential model. Then

F(x) = 1 - e(x 'T )/a , x > -

where - < T < and a > 0. Correspondingly,

Z(x) = X- , x > T

a

and

L(y) ay y >0

If a is estimated by

m-1

a- [X F (i (]
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and L(y) = ay by

L(y) ay , y > 0 , (2.9)

Eq. (2.8) reduces to the exponential tail estimator described in Subsection 2.1.

A natural extension of Eq. (2.9) is estimators of L having the form

ii
L(y) = ay + Y , y > 0 , (2.10)

where the additional term b y /2 hopefully properly takes into account small

to moderate departures of the tail of F from the two-parameter exponential

model. Together, Eqs. (2.8) and (2.10) yield the estimator.

2 ^
Xq + X(m) + a log n+ log , 0 < q < - (2.11)

It is desirable that Xq be a nondecreasing function of l/q. This is

true for the estimator given in Eq. (2.11) if a and b are nonnegative. Other-

wise the estimator can be modified in an obvious way to make it nondecreasing in

1/q [setXq = x for q:qo, where qo is chosen as large as possible subject to the

constraint that L given by Eq. (2.10) is nondecreasing in y for 0 < y - log (m/nq0 )].

In order'to determine specific choices of the quantities a and b

appearing in the definition of L, it will be assumed that

L(y) = ay + by2 , y > 0 (2.12)

where a > 0 and - < b < -. Of course this can be exactly true only if

b > 0, so the following discussion is "formal" if b < 0.
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By Eqs. (2.7) and (2.12)

S(X (m) b S(X(m) 2

Xq X(m) + a log q q

If m is reasonably large, then m/n = S(X(m) ) = S(X(m)) and hence

Xq :X(m) + a log -+ - og n) (2.13)

Set

L= log-Land N =1log inq l ognq

Also let

a + Nb

be considered as an estimator of

e=a+Nb

Then Eqs. (2.13) and (2.11) can be rewritten, respectiveTy, as

xq I- X(m) + Le (2.14)

and

Xq X + Le (2.15)

Similarly a confidence interval J = [j,e] for e yields a confidence interval
T = x q for Xq, where X(m) + Le and iq = X(m) +L.

-~ q -q (n) - (in
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It is natural to consider estimators ; of e which are linear combina-

tions of X(k) - X(m) 1 < k < m, with constant coefficients. Such an

estimator can be written in the form

in-1
=k[X(k) - X(k+l)] (2.16)

It will be shown in Appendix I that the expected value of such an estimator

e is given by

E + ma + u k) b (2.17)

where

m-l1

j =k J

Given an integer J such that 2 < J < m, set

J-I J-I

J-1 Z[X(k) X(J) J:1 1 (k )  X(k+l)

By Eq. (2.17)

E S j a+ ( --1 k b
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It is easily verified that

J-l
d._ ilk =1 + jj

Consequently

E Sj a + (1 + uj)b (2.18)

It is well known that

im - log (m-l) : ym- j=1 j

where y is Euler's constant. Thus for large values of m and J < m

j = log M- ;

so S is an approximately unbiased estimator of e if

1+lgm-l ,l + log -7T N

or, equivalently, if

J - 1 " (m-l)e I-N (2.19)
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Suppose from now on that Eq. (2.19) holds. It is shown in Appendix I that

Var(S) = 1 1 [a + (1+N)b]2 + (l+Xj )b2  (2.20)

where

J-1m-1

Equivalently

Var(Sj) = j- [(e+b) + (l+\ 3 )b ] (2.21)

Suppose now that (Sj - e)/SDC( ) has approximately the standard normal

distribution. Given 0 < c < 1 choose z,/2 such that

1 -x2/2
e dx

,./ 2

Then

P(-z/ 2 S(j) <Sj - 1/2 SD(Sj)) 1 - . (2.22

The inequality inside the probability in Eq. (2.22) can be written as

(§ . )2 < z2  Var(- ) (2.23)
/2
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Set y = z 121/J-7 . By Eq. (2.21), Eq. (2.23) can be rewritten as

(Sj-_) 2 < y2 [(e+b) + (l+Xd)b
2]

This inequality can be solved to yield the interval e-< e < a+ where

.- + Y2 b +-yN(Sj+b) 2 + b2(l-y2)(l+Xj)
-2 (2.24)

1 -Y

In order to get calculable estimates it is necessary to replace b in

Eq. (2.24) by an estimator b. By Eq. (2.18)

b- (2.25)

is an unbiased estimator of b. This leads to the confidence interval [e,e]

for e, where s and a are given by

-b (Tj+b) 2 + b2 (i_ 2 )(l+XJ)

{ ,Y}2 
(2.26)

1 -

Let : [q,x -q] denote the corresponding confidence interval for Xq determined

by xq : X(m) + L 8 and x = X(m) + L 9. This is called the quadratic tail

confidence interval procedure. It is location- and scale-invariant. That is,

if X(l)..... X(m) are replaced by T + d X(I ) ... ,T + d X(m) , where d > 0, then

x and x are replaced by -[ + d x and - + d q . [A modification to this-q q -q , q

orocedure in which X is replaced by zero in Eq. (2.26) will be discussed in

Subsection 2.4.2.]
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2.4 MONTE CARLO EXPERIMENT

A Monte Carlo experiment was designed and run to compare the performance

of the confidence interval procedures described in Subsections 2.1 through 2.3.

2.4.1 Experimental Design

The experimental design is a modification of the one used in Breiman,

Stone and Gins [2]. Twenty underlying distribution functions were considered.

They are conveniently defined in terms of four groups, each having five

distribution functions. Let Fij be the j th distribution function in the ith

group. They are determined by means of a common prescription. Given i, a

distribution function Fi of a positive random variable Xi is chosen as are

five positive constants b. = bij, 1 < j < 5. Then Fij is defined to be the
1/b.

distribution function of the random variable X. The distribution function
1

Fi and five constants in the various groups are determined as follows:

1) (Weibull) F1 is the standard exponential distribution function

defined by Fi(x) = 1 - e-x for x > 0 and F1(x) = 0 for x < 0, while b, = .5,

b2 = .75, b3  1, b4  1.5 and b5 = 2. [Note that Fi(x) = 1 - e J for

x > 0 and 1 <j < 5.]

2) (Mixed Weibull) F2 is defined by F2(x) = [F1(x) + FI(x/5)]/2,

while b1 = .6, b2 = ,84, b3 = 1.04, b4 = 1.38 and b5 = 1.65.

3) (Lognormal) F3 is defined by F3 (x) = D(log x) for x > 0 and

F3(x) = 0 for x < 0, where D is the standard normal distribution function,

while b1 = .81, b2 = 1.37, b3 = 2.11, b4 = 4.56 and b5 = 10.81.

4) (Mixed lognormal) F4 is defined by F4 (x) = [F3(x) + F3(x/5)]/2,

while bI = .88, b2 : 1.41, b3 = 2.01, b4 = 3.52 and b5 = 5.60.
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To explain the choice of the constants b let the tail heaviness

of a distribution function F having upper .1-quantile x.1 be defined as

-"(x. 1)/['(X.l)] 2 , where Z(x) = -log[l-F(x)]. As pointed out in Reference 2,

the tail heaviness is a reasonable measure of the departure of the upper tail

of F from exponential form. It equals zero for distribution functions

belonging to the two-parameter exponential model and, roughly speaking, is

positive for distribution functions having heavier (i.e., more slowly

decreasing) upper tails and negative for distribution functions having

lighter tails. The heaviness of the Weibull distribution functions

Fill .... F15 defining the first group are respectively .43, .14, 0, -.14 and

-.22. The constants b l, 1 < < 5, were chosen so that the five Weibull

distributions provide realistic approximations to a variety of data that have

arisen in a number of air pollution studies. The constants bij, 2 < i < 4

and 1 < j < 5, were chosen so that Fij has the same tail heaviness as

The sample size n took on the values 100, 200, and 400. Given n

and the underlying distribution function F = Fij, purported 50% and 90%

confidence interval procedures I for x1/n were compared with respect to

PF(xq < T), PF(xq > T), PF(Xq I T) and EF (l/Xq. These quantities were

estimated by averaging over 600 replications.

2.4.2 Results

Two-parameter exponential, two-parameter Weibull and quadratic tail

confidence interval procedures were compared for various values of m selected

more or less by trial and error (only some of which will be presented). Since
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the results for the purported 50% confidence interval procedures were

qualitatively so similar to those for the corresponding 90% confidence

interval procedures, only the results for the latter procedures will be

discussed.

Although the performance of the various procedures depends somewhat

on which of the four families the underlying distribution function Fij belongs

to (indexed by i), it mainly depends on the tail heaviness of the distribution

function, indexed by j. For this reason and for simplicity the results are

presented after being aggregated by averaging over the four distribution

functions having each given tail heaviness (i.e., by averaging over the four

values of i for each j). An overall aggregation, obtained by averaging the

results over all twenty underlying distribution functions, is also presented.

See Tables I through 3.

Table 1 summarizes the results for n = 100. In column one the confi-

dence procedure being used is described. In column two the tail heaviness is

indicated by noting the value of the shape parameter bij which yields a

Weibull distribution having the given tail heaviness. Thus the shape parameters

.5, .75, 1, 1.5 and 2, respectively, correspond to the values of .43, .14, 0,

-.14 and -.22 for tail heaviness. The overall average is indicated by AVG.

Column three (% L is short for % Left) shows the indicated ave-age of

PFij (xq < T) x 100%

rounded off to the nearest integer (for simplicity and to provide a realistic

indication of accuracy). Similarly column four (% R is short for % Right)

shows the indicated average of

PFij (Xq > T) x 100%

If .. .. . .. . . ... .. . .'.3
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Purported 90% Confidence Intervals for X1/n

TABLE 1. SUMMARY STATISTICS FOR n = 100

Procedure Shape %L %R % Length

.50 6 7 13 168

.75 6 7 13 94

W(15) 1.00 6 7 13 65
1.50 6 7 13 40
2.00 6 7 13 28
AVG 6 7 13 79

.50 4 9 12 125

.75 3 7 10 96
Q(40) 1.00 2 8 10 75

1.50 3 9 11 51
2.00 3 9 12 38
AVG 3 8 11 77

.50 7 19 27 77

.75 6 9 14 67
E(15) 1.00 5 5 10 57

1.50 5 2 8 43
2.00 6 2 7 33
AVG 6 7 13 55

.50 10 12 22 101

.75 7 7 14 80
E(lO) 1.00 5 5 10 65

1.50 4 3 7 46
2.00 4 3 7 35
AVG 6 6 12 66

.50 5 13 18 95

.75 3 5 8 82

E(15; 95%) 1.00 3 2 5 71
1.50 2 1 4 53
2.00 2 1 3 41
AVG 3 5 8 68
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Purported 90% Confidence Intervals for xl/n

TABLE 2. SUMMARY STATISTICS FOR n = 200

Procedure Shape %L %R % Length

.50 5 7 12 125

.75 5 7 12 74
1.00 5 7 12 52

W(20) 1.50 5 7 12 32
2.00 5 7 12 23
AVG 5 7 12 61

.50 4 7 12 104

.75 3 6 9 80
Q(60) 1.00 3 7 10 62

1.50 3 9 12 42
2.00 3 10 13 30
AVG 3 8 11 64

.50 7 16 23 73

.75 8 8 14 61
E(15) 1.00 5 5 11 51

1.50 5 3 8 37
2.00 6 2 8 28
AVG 6 7 13 50

.50 8 11 20 94

.75 6 6 12 72
E(1) 1.00 6 4 10 58

1.50 5 3 8 40
2.00 4 3 7 30
AVG 6 5 11 59

.50 5 11 15 90

.75 3 4 8 75

E(15; 95%) 1.00 3 3 5 631. 50 2 1 4 45
2.00 2 1 3 34AVG 3 4 7 61

I
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Purported 90% Confidence Intervals for xl/n

TABLE 3. SUMMARY STATISTICS FOR n = 400

Procedure Shape %L %R % Length

.50 4 8 12 99

.75 4 8 12 60
1.00 4 8 12 43

W(25) 1.50 4 8 12 26
2.00 4 8 12 19
AVG 4 8 12 49

.50 3 9 12 90

.75 3 7 10 69
Q(80) 1.00 3 8 11 54

1.50 3 9 12 36
2.00 2 11 13 26
AVG 3 9 12 55

.50 6 16 22 67

.75 5 8 73 55
E(15) 1.00 4 6 10 45

1.50 4 4 8 32
2.00 4 3 8 24
AVG 5 7 12 44

.50 8 11 19 86

.75 5 7 13 65
1.00 5 6 10 52

E(lO) 1.50 4 4 8 35
2.00 4 3 7 26
AVG 5 6 11 53

.50 4 10 14 83
75 3 5 8 68

E(15; 950) 1.00 2 3 6 55
1. 50 2 2 4 39
2.00 2 1 3 29
AVG 3 4 7 55
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and column five shows the indicated average of

PFij(x q  I) x 100%

the numbers again being rounded off to the nearest integer. Finally, column

five shows the indicated average of

EF. (III/xq) x 100%

rounded off to the nearest integer.

Let E(m;l00(l-U)%) denote the (purported) 100(1-a)% two-parameter

exponential confidence interval procedure based on X(l),... ,X(m) and let

W(m;lO0(l-)%) denote the analogous Weibull procedure. It was discovered

empirically that the purported l00(l-a)% quadratic tail confidence interval

procedure given by Eq. (2.26) yields coverage percentages typically greater than

l00(l-a)% and hence to unnecessarily long intervals. To correct this defect

and to simplify the resulting procedure a modified quadratic tail procedure

was employed in which A3 is replaced by zero in Eq. (2.26). This procedure is

denoted by Q(m;100(l-)%). Set E(m) = E(m;90%), W(m) = W(m;90%) and

Q(m) = Q(m;90%).

The results for W(15) in the columns of Table 1 headed % L, % R and

% are identical in the various rows because of the power invariance of the

Weibull prGcedure. The average coverage percentage of W(15) is 87%. This

suggests replacing W(15) = W(15;90%) by say W(15;92%) in order to obtain

average coverage percentages of 90%. The modification would cause a small

increase in the average length of the confidence interval.
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The average coverage percentage of Q(40) is very close to 90%, but

the average percentage of time the true value lies to the right of the

interval is 8%, which is significantly larger than the desired value of 5%.

This suggests that a better modification to Eq. (2.26) than replacing X by

zero might be to keep XJ in Eq. (2.26) but adjust Y separately for e and T so

that the average percentage of time the true value lies to the left of the

interval and to the right of the interval both equal 5%. This modification

would undoubtedly cause some increase in the average length of the confidence

since the right end-point of T is more sensitive to changes in the confidence

level than the left end-point.

The suggested modifications to W(15) and Q(40) would presumably lead

to procedures having similar behavior. Since W(15) requires substantially

more computations to implement, Q(40) appears to be the preferred procedure.

The average coverage percentage of E(15) is the same as that of

W(15), namely 87%, so E(15;92%) should yield average coverage probabilities

of very close to 90%. A more serious defect is that for the heaviest tailed

distribution functions, the true value lies to the right of the E(15) con-

fidence interval 19% of the time. On the other hand, the average length of

E(15) is substantially less than that of Q(40). This suggests modifying

E(15) to improve its average coverage percentage for the heaviest tailed

distributions at the expense of increased average length. The results for

two such modifications, E(lO) and E(15;95%) are shown in Table 1. Clearly

E(15;95%) is the better of these two procedures. It is also clear that still

better modifications to E(15) could be obtained by keeping M = 15, keeping
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the left end-point of the interval more or less unchanged, and increasing

the right end-point [by setting xq = X () + z a for some z > z.975].

A similar analysis can be made of Table 2 and Table 3 for n = 200

and n = 400, respectively. The details are left to the reader.

2.5 CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The results of the Monte Carlo experiment clearly indicate that the

task of obtaining robust confidence intervals for the extreme quantile Xl/n

is feasible and that.the two-parameter exponential and quadratic tail

procedures are promising and deserve further study. But no definitive

statement can yet be made that any particular procedure is best.

One attractive procedure that has not been tried out is to 1) use

the upper (say) [n/2] order statistics adaptively to choose a positive

number a such that the empirical distribution of X0I) -]

X[ ] - X[ ] is "close" to being exponential; 2) apply a (possibly([n/2]-l) -([n/2])

modified version of) E(m) to the transformed data X0 *l).." .Xm) obtaining

an interval [x,x q]; and finally, 3) apply the inverse transformation to

obtain the confidence interval [_/U ,x l /]

A similar procedure for obtaining point estimators of xq was suggested

in Reference 2. Surprisingly, when it was tried out, the optimal value of m in the

sense of mean squared error turned out to be m = n/2. A smaller value of

m is probably "best" for the confidence interval problem. Indeed, it has

gradually become clear that the confidence interval problem differs from the

point estimation problem in one important respect that is not readily

i -I
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apparent--namely that controlling bias is much more important for confidence

interval procedures than for point estimators with squared error loss.

To see why this is so in the simplest possible setting, suppose that

an estimator e of e is normally distributed with mean 8 + B and known variance

2 , where the bias 3 satisfies j < b for some known number b. Then the

maximum possible mean square error of 6 is 2 + b2. Let 0 < a < I and let

z /2 be defined so that

0z e-x dx:
za/2 Y2_7

Consider the confidence interval T = [e + 'r, 8 + T21, where T, is chosen as

large as possible and T2 is chosen as small as possible subject to the con-

straints that P(e < a + Tl ) </
2 and P(e > ; + T2) < (/2 regardless of

SE[-b,b]. Then T1 = -Z/2a - b and T 2 
= za/2 a + b so ITI 2(za/2 a + b).

For simplicity let a be chosen so that z,/2 = 1. Then ITI = 2(a + b). For

a numerical example let a = 1 and b = .5. With respect to the mean square error
2 b2'2 + b2 e is exactly as good as an unbiased estimator having standard devia-

tion /1.25 = 1.12, but with respect to the length 2(a + b) of the corresponding

confidence interval procedure, the unbiased estimator is much better.
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3. QUADRATIC TAIL APPROXIMATION

3.1 THE QUADRATIC TAIL FIT

Given a distribution function F(x), the general tail fitting model

for x > X(m) , where X(m) is the,m
th highest order statistics, starts with

writing 1 - F(x) as

- z(x) - (X(m) )l-F(x) : I- F(X m)]e (e

assuming some parametric form for Z(x) Z(X (m) ), and then using this fit

to estimate extreme values. In general, a convenient form for defining a

tail fit model is to write

Z(x) - (X(m) ) 
= y , x >X(m)  (3.0)

then solve to get

x - X(m) = L(y) (3.1)

The fit is more easily defined in terms of the L(y) function. For instance,

the exponential tail approximation is defined by taking

L(y) = ay

or, equivalently,

£(x) - ((m )x = [x X (m) ]/a
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Then assuming m large enough so that

1 - F(X(m)) m/n = p

we get the model

-Ex - X ]/a
1 - F(x) = p e(in

This model has been used with success (considering its simplicity) in

previous work to get estimates of percentiles high up in the tails of

distributions such as lognormals, Weibull's and mixtures of these. The

distributions whose tails we are attempting to approximate range over the

exponential class--that is, distributions such that the maximum of n readings

has, asymptotically, the first extreme value distribution. However, the

asymptotics generally require a sample size much larger than usually available.

For instance, our interest in the problem arose in air pollution where the

interest is in estimating the expected maximum or second highest maximum of

365 readings.

If one has n observations as data, say X, .... IXn, then attempting to

estimate the expected maximum of N readings, N>>n, requires the assumption of

a parametric model that is valid far beyond the range of the data. The range

of interest to us is the range in which 1 - F(x) = cL/n, 0 < a < 1. This

range is of interest for two reasons. First, given n observations Xl, ... Xn9

the above range is the most extreme range that is, in some sense, "within

reach" of the data. Second, many practical questions are of the form, Given

these n observations, how can the expected max of n observations be estimated

from them?
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For example, the median of the max of n )Oservations is let'ned is

the solution of

- F(x) = log 2/n

Furthermore, much of the classical extreme value theory is based on the

x value satisfying

1 - F(x) = 1/n

Then, even to be able to apply the classical theory, this point must be

estimated from the data.

-or distributions whose maximums are in the domain Df attraction

the first extreme value distribution, it is known that

lim P(X>x+y'X>y) - e-  , x _ 0

This result gives some theoretical justification for the exponential tail

approximation. But, as we mentioned above, a substantial sample size is

required for the tail of the observed observations to closely follow a

conditional exponential distribution. Further discussion of this issue

will be given when the concept of tail heaviness is introduced (Subsection 3.3).

In order for the tail exponential to be a reasonable approximation the

tail of the distribution cannot be either too 'heavy" or too "light". For

example, a useful intuitive notion of the range of usefulness is that the

approximation works reasonably for Weibull distributions
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1 - F(x) = e
- (x/ )

for in the range [1/2,2]. Put another way, the "curvature" of the tail

,corresponding in some way to "'x)] cannot be too far from constant over the

range for which the tail approximation is to be used.

In this project, a search has been made for models that will give a

second order approximation to the tail shape, where the exponential tail fit is

considered the first order approximation. A useful model is a quadratic tail

fit oiefinea as follows: As before, let

Z - z(X (M) = y , x > X(m)

x - X(m)  
=  L(y)

3ut now take

b2
L(y) = ay + f Y , y > 0 (3.2)

Our work with this model has shown that in certain areas it produces

significant results in the tail estimation problemi. The following subsections

give a discussion of: 1) how the distribution of properties of the model

re -irc'uted; 2) the concept of "tail heaviness" and estimates of the tail

-es; 3) the use of the model to estimate the exoected maximum and

.antiles in the range specified above; and 1) the use of the model to derive

_: :.ence intervals for parimeters such as the extreme quantiles and the
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3.2 DISTRIBUTIONAL PROPERTIES OF QUADRATIC TAIL ESTIMATES
AND AN APPROXIMATION

For any tail fitting method defined by Eqs. (3.0) and (3.1), the

distributional properties are simplified by the following observation:

Proposition 1. Suppose Eqs. (3.0) and (3.1) hold exactly. Let

X(1) >_ ... > X(m) be the m highest order statistics. Let

E(l) > ... > E(m_l) be the order statistics from a sample of

size m-l from an exponential distribution. Then the joint

distribution of

X~k - X~n , k =1...m-
x(k) C m) k

is the same as that of the variables LE(k) k . m-l.

Proof. The variables F(X (m)  U(m) have the distribution of uniform order

statistics. The model assumptions lead to

-[Q,(X k) - z,(X m)]
1 - U(k)  l - U (m)] e (k) ()

or

log (l-Uk) + log [l-U (m)] = (k)) - (x (m)

But for k > m, the lefthand side of above has the joint distribution of

E( ) ..... E(m l) Hence, writing,

E (k) : ;.(x(k)) - (X(m)

f
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and using Eq. (3.1) gives

X(k)  - X(m)  - L(E (k)

The derivation of the distributional properties of the various

statistics based on the quadratic model is gotten by using the fact that,

in consequence of proposition 1, the joint distribution of

X(k) - X(m) , k ,.... m-l

is equal to that of

b E ) 2 , k = l . , -
a E (k) + [E(k)] , k .. (3.3)

Suppose, now, for example, that we want to estimate the quantile Xl/n

defined by

1 - F(x -n

Write

1 - F(xl/l) [ [I - F(Xm) Z(xl) (m)

so then, using 1 - F(X (m) nm/n we get

log m = Z(X 1/n) - z(X(m )

Therefore, using Eq. (3.0), Eq. (3.1) again is

* 2'
X1/n (m) = L(log m) = log m + b(log(in
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resulting in the estimate

* = X + m + (oq m b

X1 n (in) lor~ 2-)J

Thus, the problem becomes to find a good estimate for the parameter

a + (10 °T- 3) b

Similarly, estimating the expected max, the second highest maximum, etc., can all

be formulated in terms of finding estimates for a parameter of the form

e = La + Mb (3.4)

where L,M are known. Since X(j) is a linear expression in a,b then it is

natural to look for estimates of a that are linear in X(j), j < M. It is

convenient to write these estimates as

^. m.-l

k w k [X(k) - X(k+l)] (3.5)

Estimates of this type can be easily computed from the data once the values

of 'k are given.

In Appendix I, the mean and variance of the estimate of Eq. (3.5) are

derived. The main results are

E6 ) k a + (m. k W b (3.6)

where

m-1

k = - (l/z) (3.7)
Zk= k
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Thus, the conditions for an estimate to be unbiased are

L w k ' M :k 1 kk (3.8)

The variance of is given as follows: Define

h = (b/a)

1 k

k k Wk (3.9)

z 1
(2) rn-l

)= I/Z2
k

then

Var(s)/a 2 = (wk+h 2 2 M- (2) 2: k hIkWk+ hyk) + h T W wk (3.10)T T

Note, incidentally, that for

wk= 1/m-

a m-I [x(j) - X (m)]

which is the estimate of the mean in the exponential tail approximation.

Using Eq. (3.10), minimum variance unbiased estimators can be derived as

well as estimators that minimize the least squares loss for given values of

h = a/b. The details will be discussed in Appendix II.
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However, minimizing Eq. (3.10) even with a small approximation as done

in Appendix II [the last term of Eq. (3.10) is discarded] leads to calculations

which necessitate a small computer or hand programmable calculator. For

this reason we looked at an approximation which is applicable not only to

quadratic L(y), but general L(y).

Write

^ in-l

S= ~Ik wk[L(Ek) - L(Ek+)]

Using a first order Taylor expanston

L(E(k)) - L(E(k+l)) = [E(k) - E (k+l)1]' (E(k) + e[E(k) - E(k+l)])

If L'(y) is slowly changing, then the approximation

L'(E(k) + e(Ek  - Ek+l)) L'(E(E(k))) = L'('k)

seems reasonable. Now

E(k) - E(k+l) = Zk/k , k : 1..... -l

where Zi .... $Zm_1 are independent unit exponentials. Thus

rn-1
' W k Z kL'(k)

Then the va'iance of e is

Var( ) - W k[L'( k)
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The expectation is

mn-i

E(e) I w L'(Pk)

Suppose that L(y) = L(y,_) depends on some multidimensional parameter _,

and suppose that 8 is an estimate of,3(_). Then 0 is approximately unbiased

if

8(U) = w Wk L'(Ik'-)

To get the minimum LSE estimate at _ = _SO, look at the square error

LSE Var(;) + B
2

where

B = e(0) S - 3 k L(vk,%-)

To minimize the LSE, take its derivative with respect to wk, getting

L ,)] 2 B L'

wk (Pk, o po 0

so

wk =B/L' k
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Not unexpectedly, if L'(y) is increasing, the coefficients wk decrease and

conversely. For L(y) = ay, the coefficients wk are constant, giving the

exponential tail approximation. B can be evaluated using

B = 6(a0 ) - k L'

: - (m-l) B

so

B 0 )/m

If we want to get an unbiased minimum variance estimator of _

then we minimize Var(a) subject to e(_) = 2] k L'(Pkao) . This gives

the same solution as above.

Something different can be done with the quadratic tail approximation

to produce estimators that are unbiased over the entire range of a,b for

which the tail fit is reasonable. The LSE minimum estimator of 00 = L a0 + M b0

is given by

L a0 + M b0  = L + M h0

k =ao + bo k l + h 0 ' k

and will give low LSE only in a vicinity of h = hO. The unbiased requirement,

however, can be put in terms of a and b separately because of the linearity

in a,b. That is, we can write

1
9
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0 = La + Mb

Ee : a w k + b k'k

and require that the ksatisfy both

L: = k_

and

M= -k 1k

Minimizing the variance under these two restrictions at h0 gives

= X 0 + X11 "0 k

wk (I +hOPk ) 2

where X0 and .II are determined by the constraints.

However, every estimator we have simulated which satisfies the two

above constraints, no matter how complicated or simple it is, has had small

bias for all distributions tested except the heaviest tailed lognormal.

We give some evidence in Appendix II that the approximate solution

gives results very close to those of the exact (well, almost'.) solution.

3.3 TAIL HEAVINESS ESTIMATES

In the previous report on work in this area, a definition of tail

heaviness was proposed as meeting certain reasonable requirements (Reference 1,

pp. 18-20). The characterization did not consist of a single number, but was a



59

local measure of the curvature of the distribution. The tail heaviness

H(p) at p, 0 < p < I was defined as follows: Let

2
y(x) = Z" (x)/[Z'(x)] , x > 0

and set

H(p) : -y(xp)
p

where xp is the pth quantile of the distribution. For exponential distribu-

tions, H(p) = 0. A positive value of H(p) corresponds to a tail that is

"heavy" relative to the exponential, and a negative H(p) to a tail lighter

than the exponential. For the Weibull and lognormal distributions studied

in Reference I, the tail heaviness is tabled below.

Weibull

b

.5 .75 1.0 1.25 1.5 1.75 2.0

.3 .83 .27 0 -.17 -.27 -.36 -.42

.2 .62 .21 0 -.12 -.21 -.27 -.31

.1 .43 .14 0 -.09 -.14 -.19 -.22

p .05 .33 .11 0 -.07 -.11 -.14 -.17

.01 .22 .07 0 -.04 -.07 -.09 -.11

.005 .19 .06 0 -.04 -.06 -.08 -.09

.001 .15 .05 0 -.03 -.05 -.06 -.07
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Lognormal

b
.5 .75 1.0 1.25 1.5 1.75 2.0

.3 1.17 .60 .31 .14 .02 -. 06 -. 12

.2 1.03 .55 .31 .17 .08 .01 -.04

.1 .68 .36 .20 .11 .04 .00 -.03

p .05 .61 .34 .20 .12 .07 .03 .00

.01 .52 .29 .19 .13 .09 .06 .03

.005 .46 .27 .17 .12 .08 .05 .03

.001 .39 .23 .15 .10 .06 .04 .02

For the Weibull's with b = .75 to 1.5, and for the lognormals with

b > 1.25 there is a minimal curvature problem for p < .1. The curvature

problem is more severe for the extremely heavy and light tailed Weibull's

and the heavy lognormals. Since the asymptotic extreme value theory depends

on the condition H(p) - 0, the size of H(p) for these latter distributions

for p as small as .001 indicates the inapplicability of the theory for fairly

large sample sizes.

Using the quadratic model we have:

Proposition 1. The tail heaviness at p =1- F(X(m) ) is equal to

h = b/a
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Proof: Since 2' (x) (X (k) y, then

ZK.X -1'dx

Z"(x) dx dx " y

d d)(d2x\/l/dx\ 3

Using

x - X(k) = ay 2

gives

dx -a + by
dy

d 2x b

dy
2

Therefore, at x = X(m) or y = 0,

-Y(X(m)) : b/a : h

Therefore, the quadratic model can be used to get estimates of the

tail heaviness. For a simulation we constructed four estimators. The first

three were of the following type: Denote

1k-l
k- [X -

ik k1T () k
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Then we used a split half approach and look for a linear combination

C S[m/2] + D S

which will give an unbiased estimate of b. Using conditions in Eq. (3/8) gave

the result

C = -D : Ip

The selection of the denominator posed a problem. Using an unbiased

estimator for a gave a noisy estimate for h. Finally, we decided to use

Sm as the denominator. For the last estimator we used an unbiased estimator

at b whose variance was a minimum at h = .25.

For the simulation, we used a sample size of 200 with the Weibulls

and lognormals as above. Three different values of m were selected,

m = 20, 30, 60. The first three estimators, then, had the form

M m/2 1 ,  m = 20, 30, 60
S[m/2]

For the last estimator m = 60 was used, and it is denoted by h 60*

Altogether, 1000 runs were made, each run generating the top 60

order statistics of the 14 distributions using Marsaglia's "Super-Duper" uniform

random number generator, and using the inverse transformation to get the

order statistics of the distributions desired. The results are tabled below,

giving the average and the standard deviations of the estimates.
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Wei bul I

b
.5 .75 1.0 1.25 1.5 1.75 2.0

2 AV .258 .083 -.003 -.053 -.086 -.109 -.126
SD .329 .315 .307 .303 .300 .298 .296

^ AV .314 .105 .003 -.057 -.097 -.124 -.145

h30  SD .275 .262 .255 .250 .248 .246 .244

6 AV .422 .134 -.008 -.092 -.146 -.184 -.212SD .199 .188 .181 .177 .174 .171 .170

j AV .427 .134 -.006 -.087 -.140 -.177 -.204h60 SD .187 .159 .148 .142 .139 .137 .136

Lognormal
b

.5 .75 1.0 1.25 1.5 1.75 2.0

20 AV .525 .296 .180 .111 .066 .033 .010SD .377 .357 .344 .335 .330 .327 .324

30 AV .592 .331 .198 .119 .068 .031 .0043 SD .309 .290 .277 .269 .264 .260 .258

6 AV .693 .371 .205 .107 .043 -.002 -.035h SD .230 .217 .207 .201 .197 .194 .192

60 AV .745 .388 .214 .113 .049 .004 -.030
60 SD .273 .218 .190 .177 .169 .164 .161

Since the denominator is an unbiased estimate of a + b, instead of a,

the estimates tend to reflect the values of H(p) at values of p larger than

m/n. For all 14 distributions, the estimates h60 and h60 have average values

close to H(.1). The averages of h30 are close to H(.05), and the averages of

h20 are slightly above the H(.01) values.
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Of course, the smaller m is, the higher the SD's of the estimates.

In use, either n60 or 60 is preferable in terms of variance, if p = .1

is in the tail range of interest in the problem. Note that h60 almost

always has a significantly lower variance than h6 0, but this has to be

balanced against the difficulty of computing the coefficients.

If these estimates of tail heaviness are used to detect departure

from exponentiality, then, using a 2SD rule of thumb, the true value of

H(.l) would have to satisfy IH(.I)W > .3 before the departure could be

reliably detected. Thus, only the curvature of the heaviest tailed Weibull

and the two heaviest-tailed lognormals can usually be detected. However,

these are the distributions that cause the largest absolute errors in the

exponential tail estimates.

3.4 ESTIMATES OF THE EXPECTED MAXIMUM

As a test of the quadratic model and exponential tail estlmators, a

simulation study was designed to estimate the bias and variance of a variety

of tail estimators of the expected maximum of the 14 Weibull and lognormal

distributions.

Twelve estimators were computed and compared, again using a sample

size of 200, 1000 runs, the Marsaglia random number generator and inverse

functions.

The twelve estimators were in 4 groups: 1) the maximum X(1 ) was

used as an estimate for E X(1 ); 2) three exponential tail estimates

corresponding to m = 20, 30, 60; 3) four quadratic minimum variance

unbiased tail estimates with the variance minimized respectively at
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h .5, .25, 0.0, -.15 using m = 60; 4) four quadratic minimum squared error

estimates with the minimization carried out at h = .5, .25, 0.0, -.15 and

using m = 60.

The quadratic model was used to construct the third and fourth

groups of estimates. The derivation is based on the following: Write

X(1 ) = X(1 ) - X(m) + X(m)

Now by the model

(1 -(i) (1) 2 ()

Use the fact that

M-1
E(E( 1)) = 'A1 = -  l/i

and

E(E2 )) 2 + "(2)

(1) 1

For m = 60, 1 = 4.655, (2) 1.645, so,

E(X( 1 ) - X(m) = 4.655a + 11.657b

Therefore, estimating the parameter

4.655a + 11.657b

by g ives tne estimate X (m) + for E X(I
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Denote by RMSE the root mean squared error. The tables below give

the value of E X(l) and the RMSE of X(,) as an estimate of E X(I ) .

Weibull

b .5 .75 1.0 1.25 1.5 1.75 2.0
EX I ) 36.2 10.7 5.9 4.1 3.2 2.7 2.4

RMSE[X(1 ] 17.2 3.2 1.3 .70 .46 .33 .25

Lognormal

EX 63.2 14.8 7.4 4.9 3.7 3.1 2.7
(1)

RMSE[X(1 ) 66.9 8.9 3.1 1.6 .98 .68 .51

The RMSE[X(1)] was used as a benchmark, and the ratio of the RMSE's

of all other estimates to the RMSE[X( 1)] was computed. The results are

tabled below.
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RATIOS OF RMSE's

Weibuli

b
Estimates .5 .75 1.0 1.25 1.5 1.75 2.0

exp (20) .61 .61 .66 .73 .80* .86* .92

exp (30) .66 .57 .59 .69 *80* .91 1.02

exp (60) .95 .59 .49 .71 1.02 1.30 1.57

UNBMIN (h=.5) .63 .89 1.11 1.33 1.55 1.76 1.95

UNBMIN (h=.25) .65 .83 .98 1.12 1.26 1.40 1.53

UNBMIN (h=O.O) .75 .83 .88 .92 .97 1.01 1.05

UNBMIN (h=-.15) 1.13 1.11 1.10 1.09 1.09 1.08 1.08

MINE2  (h=.5) *46* 1.12 2.47 3.69 4.73 5.60 6.35

MINE2  (h=.25) .64 .56* 1.39 2.23 2.96 3.56 4.10

MINE 2  (h=O.0) .87 .62 .48* .66* .95 1.2, 1.47

MINE 2  (h=-.15) .43 .93 .92 .91 .90 .90 .90*

Minimum .46 .56 .48 .66 .80 .86 .90

Minimum value.

Lognormal

b
Estimates .5 .75 1.0 1.25 1.5 1.75 2.0

eyo (20) .48 .53 .54 .54 .55 .57 .59

exp (30) .52 .56 .54 .51 .50 .51 .52

exp (60) .61 .68 .61 .51 *44* .41* .43

UNBMIN (h=.5) .42* .51 .64 .75 .86 .95 1.04

UNBMIN (h=.25) .45 .55 .64 .72 .79 .86 .91

UNBMIN (h=0.0) .63 .69 .74 .77 .80 .82 .84

UN =P4 -. !5) 1.17 1.14 1.12 1 .11 1 .10 1.10 1.10

MPiE 2  (n=.5) .54 .37" .42 88 1.37 1.81 2.21
rINE 2  (h=.25) .48 .52 .35* .-* .67 .98 1.24

-h=..O) 62 .70 .64 .54 .46 .42 .42*

- n=-.15) .92 .91 .91 .90 .90 .90 .90

'1 nimum .42 .37 .35 .d3 .4L .41 .42

Minimum value.
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The fundamental issue in the behavior of these estimates is the

trade-off between bias and variance. The two estimators exp (30) and

exp (20) have the best overall performance with average ratios of:

Weibull Lognormal

exp (20) .74 .54

exp (30) .75 .52

The estimate exp (20) is better at the extreme values of heaviness, where

bias is more of a factor while exp (30) performs better for moderate to

small values of H where its variance is smaller.

The other estimators performed as expected with one exception, dis-

cussed below. The unbiased estimators, as will be shown in the percent

bias tables below, lived up to their billing and had very little bias for

any of the distributions except the heaviest tailed lognormal. However, the

payment was in terms of variance. Except near the values of h at which

their variance was minimized, their variances were large and produced

inflated RMSE's. The minimum squared error estimates also lived up to their

billing by producing either the minimum or near minimum ratio near the values

of h at which they were optimized. Their difficulty was that a bias which

is small at one value of h can be large at other values. The large bias led

to large ratios away from the value of h at which they were optimized.

A look at the percent of bias, that is,

100 E X(l) -
E X(l)

is revealing.
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Percent Bias - Weibull

Estimator .5 .75 1.0 1.D25 1.50 1.75 2.0

X (1 -.1 -.1 -.1 -.1 -.1 .1 -.1

exp (20) 20.2 6.2 .5 -2.2 -3.5 -4.0 -4.4

exp (30) 26.1 8.4 .3 -3.6 -5.6 -6.3 -7.0

exp (60) 38.6 13.4 -.2 -7.5 -11.5 -13.4 -14.7

UNBMIN (.5) .4 -2.9 .4 3.8 6.2 8.0 8.9

UNBMIN (.25) .5 -2.1 .5 3.1 4.9 6.3 6.9

UNBMIN (0.0) .5 -.9 .4 1.6 2.5 3.2 3.4

UNBMIN (-.15) -.3 .1 -.2 -.4 -.6 -.6 -.8

MINE2 (.5) 15.3 -28.3 -50.4 -60.7 -64.8 -65.5 -65.1

MINE 2  (.25) 27.2 -8.2 -26.6 -35.7 -39.8 -41.1 -41.5

MINE 2  (0.0) 39.5 14.6 1.1 -6.2 -10.2 -12.2 -13.5

MINE 2  (-.15) 11.4 7.4 4.6 2.9 1.8 1.2 .5

Lognormal

X(l) -5.3 -3.2 -2.2 -1.7 -1.4 -1.0 -.8

exp (20) 42.1 23.2 13.2 7.6 4.4 2.5 1.2

exp (30) 50.4 29.0 16.8 9.7 5.4 2.8 1.1

exp (60) 63.3 39.3 23.3 13.2 6.8 2.6 -.1

UNBMIN (.5) 25.6 8.4 3.4 2.3 2.5 3.0 3.5

UNBMIN (.25) 21.1 6.7 2.6 1.7 1.8 2.3 2.7

UNBMIN (0.0) 10.0 2.5 .6 .2 .4 .7 1.0

UNBMIN (-.15) -10.1 -4.7 -2.8 -2.0 -1.6 -1.3 -1.0

MINE2 (.5) 56.2 17.1 -8.5 -23.7 -32.3 -37.0 -39A

MINE2  (.25) 61.1 28.6 7.1 -5.9 -13.7 -18.1 -20.3

MINE2  (0.0) 63.9 40.2 24.3 14.2 7.8 3.7 .9

MINE 2  (-.15) 7.9 7.9 6.5 5.1 4.1 3.4 2.9

________________________,____



70

Notice that the estimators certified as unbiased by the quadratic

model do, indeed, have very small biases. The best is the unbiased estimate

whose variance is minimized at h = 0. Its average percent bias (absolute

values) is 2.0%. The only problem, again, is with the heaviest tailed log-

normal where the bias rises to 10%.

To show that even simple estimates satisfying

L= ' k w

M W Wk W'k

will be relatively unbiased, we selected an estimate of the form

X0 S(30 ) + 'l S(15)

The values of X01 x1 satisfying the two unbiasedness conditions are

I : (M-L)/ 1I5

X0 = L - X1

24
where "15 Z 1/k. Using this with values of L,M adjusted to estimate

15
E X(1 ) with the top 30 order statistics, the estimator gave the following

bias:

-.,--
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Percent Bias

b

.5 .75 1.0 1.25 1.50 1.75 2.0

Weibull .3 -.8 .2 1.1 1.7 2.2 2.3

Lognormal 13.2 3.4 .9 .4 .4 .6 .8

Because of the fact that the estimators that minimize the squared error

are sensitive to the choice of h used, another experiment was carried out

for the distributions such that H(.I) > 0. In this simulation, the unbiased

estimator h of h = a/b was first computed using the upper 60 order statistics;

then, the minimum squared error estimate corresponding to the value max(h,O)

was calculated. The results are promising, as given in the table below of

the average ratios of the RMSE to that of X(1).

AVERAGE RATIOS OF RMSE/RMSE[X(1)] FOR H(.l) > 0

Weibull Lognormal

exp (20) .61 .53

exp (30) .62 .53

2 step est. .57 .50

Although the improvement is not very large, it is suggestive for future work.

3.5 CURVATURE AND TRANSFORMED TAILS

One somewhat strange bit of behavior is given by the estimates optimized

at h = -.15. On the one hand, their biases are consistently small, doing

better for large positive H values than the unbiased estimates optimized at

positive values of h. We conjecture that this is due to the fact that
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minimizing the variance at a given value of h does not enhance the general

unbiasedness properties. However, a harder to explain phenomenon is that

the minimum squared error estimate at h = -.15 does not give a significant

decrease in the squared error for the Weibull distributions with negative

H. In fact, for the four Weibulls with negative H, exp (20) is a consistent

improvement on MINE 2(-.15) except for a slight difference at b = 2.0.

At first, we thought that this indicated some deficiency of the

quadratic model for light tailed distributions and that a different method

of selecting the coefficients jk in the estimate

^ m-1e=  k~k -X )
1 [X(k) X(k+l)I

would bring the ratio of MSE's down. We concluded that the difficulty was

more fundamental. First we noticed that even with the estimators exp (20),

exp (30),the ratios go up rapidly as the Weibulls become light tailed,

i.e., b > 1. On investigating the cause, it turned out that the difficulty

was not really with the bias (although that contributed) but instead with

the fact that the standard deviations of exp (20), exp (30), were, surprisingly

enough, not that much less than the standard deviation of X(l). The results

are given below.



73

SD AND BIAS OF ESTIMATORS

WEIBULL DISTRIBUTION

b

1.0 1,25 1.50 1.75 2.0

X SD 1.38 .70 .46 .33 .25

bias 0.00 0.00 0.00 0.00 0.00

exp (20) SD .84 .50 .35 .26 .21

bias 0.00 .10 -.11 -.11 -.11

exp (30) SD .75 .46 .32 .24 .20
bias 0.02 -.15 -.18 -.17 -.17

Thus, for instance, even if exp (30) were unbiased at b = 2.0, the ratios of

RMSE's would be .80. This led to the conjecture that the essential difficulty

was with the linear form of the estimate; that at least with light tailed

distributions, one could not construct a linear combination of X(k) - X(k+l )

that was not too biased without a resulting SD close to that of X(l) ,

This led to the idea of seeing how much an optimum or nearly optimum

transformation could improve the RMSE. If X has a Weibull distribution with

parameter a then Xa has an exponential distribution. Therefore, given X(m),

the differences

Xa Xa
X(k) - (m) , k > m

have exactly the distribution of exponential order statistics. That is,

the transformed variables Xk ) are exactly fit by an exponential tail. Thus,
(k)

the exponential tail estimate



74

e m- = }- +XC
(M M1 x(k) X(m)]

should give a good estimate of E XaI ). Then take (e)
1/  to be the estimator

of E X(,). We assumed that a was known for the Weibulls. That is, for the

Weibull raised to the power b, we took o = b.

For the lognormals, it is not clear what the optimum transformation is.

We selected the powers a based on a comparison of the lognormal heaviness to

the corresponding Weibull heaviness. So, as a guess, we took the values of

, corresponding to b to be given by

b = .5 .75 1.0 1.25 1.50 1.75 2.0

= .4 .5 .6 .7 .8 .9 1.0

The results, expressed as ratios to RMSE[X( 1 )] are

Ratios

b

.5 .75 1.0 1.25 1.5 1.75 2.0

Weibull .44 .47 .49 .49 .50 .50 .51

Lognormal .41 .40 .39 .39 .40 .41 .43

The Weibull results are a lower bound under the assumptions that only

the top 60 order statistics are used and that the scale is unknown. Of

course, there is the question of how much bias has been introduced by the
1/2

approximation E X [E X'I] For the Weibulls, the bias of the
X(I) ' (1)

estimate is 3% at b = .5 and less than .6% for the others. The lognormal
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estimates have considerably larger bias at the heavier end, rising to 8%

at b = 1.0, 17% at b = .75 and 39% at b = .5. The indications are that

having smaller values of a at the heavier tailed lognormals would have

given further reductions in the ratios.

To get a comparison of the best linear fit based on the quadratic

model, we ran the approximate solution to the minimum RMSE optimized at

h = .6, .4, .2, 0, -.2. The table below is the minimum ratio over all of

the estimates.

RATIOS FOR "BEST" LINEAR FIT

("Best" = best quadratic model linear fit)

b

.5 .75 1.0 1.25 1.50 1.75 2.0

Weibull .50 .49 .48 .66 .95 .95 .91

Lognorma7 .43 .41 .38 .38 .46 .42 .42

For all of the lognormal distributions the best linear and the trans-

formed estimates are comparable in terms of RMSE. They are comparable for

the Weibull for b < 1.0.

This gives some evidence that long and short tailed distributions

necessitate different procedures to give good estimates of E X(,). For the

long tailed distributions a transformation is not needed to "uncurl" the tail;

the appropriate linear combination of order statistics will do almost as well

as the best transformed estimate. In the short tailed cases (Weibull with
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b > 1.0) a power transformation is essential to significantly reduce the

SD of the estimates.

3.6 CONFIDENCE INTERVALS

Suppose that the parameter of concern is of the torn

X(m) + La + Mb

If 100% confidence intervals are found for

9 = a + (M/L)b = a + Nb

say U,U, that is

P8(U<e <U) =I - Q

then IOOQ% confidence intervals for X(m) + La + Mb are (approximately)

given by

[X(m) + LU, X(m) + LU]

Start by finding a simple unbiased estimator for a. Take the estimator

to be of the form

where

J-l 1

-§ ([ k ( )
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where J is the value to be determined. Since (k 1/J-1, k < J-1, and zero

for k > J, the expectation of S-- is, by Eq. (3.8), equal to

a + 1 Uk b
k

An easy calculation gives

J-1

J-1 kTl

Hence J is determined through the equation

Pj=N-1

The well-known approximation

k
\ 1/i '- log k + y
i-l1

leads to u Jlog [(m-l)/(J-l)] so that we get the equation

a - 1 (m-1) e- (  (3.1 )

To compute the variance of Sj, use Eq. (3.10) and the fact that

1/J-1 , k < J-1

Yk

ik ,k-J
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to get

Var(Sj) : C1 a2 + C2 ab + C3 b2

where

cl = 1 =I/J-IT k

C2 2 +

2 2 [2(J-l) + (J-i) u]

j 2(1) (1 + N)

(jl - ( k+1) + (i/k)2 + 2 1 m- (2)
3  - 2  T k (J-1)2 T k

Now

mI (/k) 2 = (2)

m-1 (2) m-i m-i

K 1 - I/.2 = L
k T j-k

(k)2 = (J-1)[(2+Ud)2+ 1] -T
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where

J-1
J I =  1/j

j=l 11j

(This last calculation is carried out by writing 
11k = j + k where

I J-1

k I/j.) Hencej=k

_ 1 [(2 + J)2 + 1] + )2 +_ (2)
C3  1-1 (J-1) 2 1

or, assuming J, say, > 10, then

1 [(2 + ud)2 + (J-1) (2)C3 -J-1

And since 2 + uj =  N + 1,

Var(Sj) = 511 a + 2(N+)ab+ (N+I) 2 b+ b2

Note that A'j = (J-1) u(2 1 (J-l)/(m-l).

We :an write the above as

Var( d) = 1) [a + (1+N)b] 2 + (1 + ; ) b2 1  (3.12)

The righthand side of Eq. (3.12) involves the unknown parameters a and b.

However, we can write

a + (1+N)b = a + Nb + b = + b
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We can get an estimate of b by using an expression of the form

; = CT - - m )

Looking at Eq. (3.8). b will be an unbiased estimate of b if

C = I/j = 1/N-i

The key to the remaining part of the computation is the assumption

that S-3 has an approximately normal distribution. Under this assumption

P -z • SD(Sj) <Sj - e <z SD(Sj)) = 1 - Q , (3.13)

where SD(S3 ) is the standard deviation of §j and z is computed from the

normal tables, i.e., for a unit normal Z,

P(Z > z) = Q/2

Write the inequality inside the probability in Eq. (3.13' as

_6)2 < z2  Var(Sd)

or putting y = z/(l-J), and using Eq. (3.12)

(j -e)<2 2 [(a + b)2 + (1 + b2

Simplifying leads to

2(I - -2) - 2 (Sj , . 2 b) y 2 b2 (2 + J) +S 0
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Solving gives the following expression for the roots:

(-§+(2b) + (Sj+y 2b)2 S2(I-y 2 ) + (l-y 2 )y2b2(2+Xj)

Y 2

and simplifying the square root gives

(§j + y2b) +ysJ(j+b) 2+ b2(l-Y2 )(l+a)

Y2l -y

To get computable confidence limits, b is replaced by the estimate b.

However, this adds extra variability to the limits and tends to make them

too large. To adjust and simplify, we replace the factor 1 + j by 1,

arriving at. the final form

+ y+ b ++;(-)
u22 

2

S3+y b 1 y +)+b(
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4. EXPONENTIAL TAIL ESTIMATES APPLIED TO STATIONARY SEQUENCES

A simulation experiment was carried out to see how sensitive exponential

tail fitting was to the presence of correlation. Recall that if

X(I) > ... > X are the order statistics, then the exponential tail
(1 '( ) ' - (n)

fit for x > X(m) has the form

-[x-Xr ]/a
1 - F(x)1 -F(X (m) e

The parameter a is estimated by

^ 1 mIn

a m-l LX(k) '(m)] (4.0)

If the exponential tail fit holds exactly, then

X(k) - X(m) = a E(k) , k =

where E(l) > ... > E(ml) have the distribution of order statistics in a

sample of size m-l from an exponential distribution with unit mean. Therefore,

E(X(1 )  - X(m) a E (E(1) a u ,

where

M-1

1/k log (m-l) + yl T
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where y is Euler's constant. Thus

E X(I )  E X(m) + a

Estimating E X(m) by X and a by the estimation a of Eq. (4.0) gives the

exponential tail estimate

X(m) + u a

for the expected maximum of n observations.

The stationary time series were generated as follows: Let

Yn+l = n + 17-c2 en n = ,...,199 (4.1)

Y 1 e el

where e are independent N(0,l) variables. Thus, the Y Y ... Y form an 200

Gaussian Markov chain with auto correlation

EYn+k Yk 

They have mean zero and variance one. The actual sequence used consisted

of the lognormal variables

Xn =e 3 " n n = 1,...,200
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where, as in our previous work,

ij : =-(log 2)/2bj j =/o g2 /b

and b. took the values .5, .75, 1.0, 1.25, 1.5. This range included a

very heavy tailed distribution (b = .5) and ranged up to the light tailed

distributions at b = 1.25, 1.5.

Each run was repeated 1000 times using the Massaglia "Super-Duper"

uniform random number generator and the Box-Mullen transformation. Since

the exact value of E X(I) was difficult to compute (except for o = 0) the

average value of X(I) over the 1000 runs was taken as the target figure.

Examination of the SD's of X (1) showed that the error in using X(1) as an

estimate of EX(I) would not appreciably affect the results.

As in our other work, the SD[X( 1)] was taken as the benchmark. The

RMS error at the exponential tail estimate using m = 30 was computed using

the set of : values

, = 0, +.2, +.4, +.8

and divided by SD[X( 1)] to give a measure of the improvement in using the

exponential tail estimate instead of X(1)n as an estimate of EX(I).

First of all, it is interesting to note how EX(I) [or rather X(1)] is

affected by the correlation. This is tabled below:
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K1

b

.5 .75 1.0 1.25 1.5

.8 48.6 12.1 6.3 4.3 3.3

.4 60.9 14.4 7.2 4.8 3.7

.2 61.3 14.6 7.3 4.9 3.7

.0 61.3 14.6 7.3 4.9 3.7

-.2 61.4 14.6 7.3 4.9 3.7

-.4 61.4 14.6 7.3 4.9 3.7

-.8 60.9 14.3 7.1 4.8 3.6

The actual Y1 values are quite insensitive to c except at = .8.

RMS(EST)/SD[X(
1 )

b

.5 .75 1.0 1.25 1.5

.8 .53 .66 .74 .80 .36

.4 .49 .58 .58 .57 .57

.2 .52 .60 .58 .56 .55

.0 .55 .61 .58 .55 .54

-.2 .54 .60 .58 .55 .54

-. 4 .55 .60 .57 .55 .54

_ 8 .47 .56 .58 .60 .62
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Interestingly enough, the largest effect of correlation is on the

light-tailed distributions, most pronouncedly for large positive correlation.

On examining the statistics, the reason for the loss of efficiency is not

that the bias has increased. In fact, the exponential tail estimates have

very little bias at p = + .8 for the light-tailed distributions. The

problem is that their variances increase considerably.

At any rate, the exponential tail estimates hold up fairly well,

always have an RMS error less than that of X l), and are a considerable improve-

ment uniformly for the heavy tailed distributions. Of course, exponentially

decreasing auto-correlation in our example rules out long term dependence,

and one could manufacture examples of stationary sequences with long term

dependence where the exponential tail estimate would give very poor results.
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Appendix I

MEAN AND VARIANCE CALCULATIONS

This appendix contains the calculations leading to the mean and vari-

ance, under the quadratic model, of the statistic

m-1

= kwk[X(k ) - X(k+l)]
1

Put W0 0 andYk= kwk - (k - l)wk-l to get

m-1
e~ ftkL(E

m-l m-l
- kE(k) + E

'f k (kk)k

1 1

We use repeatedly the fact that the E(k) have the representation

m- z

E(k) Fa#
j=k

where Z, .. Zml are independent exponential variables with mean one.

Therefore

E (E(k)) =

and



90

E(E 2 E)
jz=k

+ I~

i =k

2 (2)

Hence

E- a 1kk+ b Yk k I

For any sequence 3k' k 1, ..., m-i

3kY kwk(3k - k+l )  (I.I)
1 1

using the convention Sm = 0. Hence

' k k = r n k-

and
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m-1 m-1
2 (2) 2 2 )

+ p~' I = L.. k,, _ k+ '-yk~k k k~ - 'k+j + 7 )
11k

rn-i

1

so

E; = a wLk  4 Uk Wk
1 1

To get the variance of e, write

e a wkZk+ Yk(

k=l jZk /

and denoting

min(j ,z)
hj = Yk

gives

a :wkZk + bE h ZZ

k=l jZ:I

Let Zk = Zk 1. Then
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S- E = a w kZk + 2b Z hjzZz + b .. hjg(Z Zj - 6 j.)j ,Z j ,2

where .Sj = 1 if j = Z; 0 otherwise. Put tk = ak + 2b h then,

(e- E;) 2 = 2 tktiZkZj + 2b E tkhjZ(ZZZJ -6 jz k

+ hjzhik(ZzZj - 5jz)(Zizk - ik (1.2)
j,,k,i

Taking expectations and using

EZkZj = kj' EZkZjZz = 2 6 kj~jz

gives

Var(3) = t + 4b tkhkk + b2  h2 E(Z -)

+ ' 2 2b 2 1: 2L h,,hkk E( hZk
Z, k 2zk

computation gives E(Z. - 1)2 = 8, E(Z - 1) 0; so
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Var(6) tk +4 tkh kk + b' (8 Z hk + 2Z h )

Now,

h I min~jZ)

so

h kk 2k7

and

Zhjz~ h h.j

j j=1 1~~

1 + 1

1

Also

2Zh 2 4Zh 2 4 E h 2 4Zh 2

Z<k Zk

so denoting
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m-i

hz = hjz
j=l

we have

Var(e)= (a.k + 2bhk)2 + 4b E (awk + 2bhk)hkk + 4b2 hkk + l~ hk)
+Z k

Ca w + 2b(hk + hkk)]
2 + 4b2 >z h k

Z<k

Note that

hk +hkk 2= k +wk+ kk

To compute:

2
4 h2 W z

zk =  7

m-1 u (2)"J
2

t= 1

where

M1

rnki

Ik
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So f inall Iy we have the equa ti on f or the vari ance g iven i n the text:

VarS)1 + by + b ~i 2 + M-1 ' (2), 2

k=l k=l
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Appendix II

DERIVATION OF MINIMUM VARIANCE UNBIASED ESTIMATORS
AND MINIMUM SQUARED ERROR ESTIMATORS

In this appendix the minimum variance unbiased estimators and the

minimum squared error estimators are derived. Writing the variance as

m-1 m-1

Va. 1 1w ~k h(Yk + wkk)] +k k  (II.1)
a11

The conditions for unbiasedness, if

6 La + Mb

are

w wk = L, WklJk M .(11.2)

The minimum variance unbiased estimators, minimized at h, are gotten by

selecting the wk to minimize Eq. (l.1) for a given value of h under the

constraints of Eq.(II.2).

For any set of coefficients wk , the bias at h is

B = a(L + hM - k - h 1 wklk)

To get the minimum squared error estimate at h, minimize

[Var(e) + B(11.3)

a
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An exact solution seems formidable. We get an "almost" solution by

noting that the second term in Eq. (II.1) is usually small in size compared with

the first (except, perhaps, for negative h). Hence, we throw it away and

work on minimizing

m- 1

2 [wk + h(Yk + wkk
)]2

with the constraints of Eq. (tI.2) or with B 2/a2 added.

Let

Zk ='ak + h(yk + wkl k)

then

Z Zk = wk + h Y Yk + h wkk

Verifying that

rn-l in- k

1 1 1

gives

Zk= W wk +2h w k
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Define the sequence ci.k =1, **,r-i to satisfy the identity

~ck k 'kgik

Then

wk = .1 Zk -2h Zkctk

The minimum variance unbiased problem reduces to Eq. (11.4):

Minimize E subject to

SZk = L + 2hM

ckzk = M (11.4)

The minimum squared error problem becomes Eq. (11.5):

Minimize (~ Zk + B2

P where
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( (L + hM - Z + h ckZk (11.5)

In the first problem, the solution is clear

Zk = O + x 1 k

where X09 X1 are determined by

(m - l)x0 + X1 Eak = L + 2hM

XO E c + "I E c = M (16

In the second problem, we get the minimizing equation

Zk = B(l - hk)

so the solution has the same form as the solution to the first problem. We

can solve for B by using

2 Zk B I - h k
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so

B = L + hM - Zk + h (kZk

= L + hM - B t 8hF a

or

BL+hMB=

m - 2h a L ak + h2  'k 2

L+hM

1 + (1 - hak)2

In both cases the solution hinges on solving forcik, and then being able to

use the Zk values to get the wk values.

Write s = wk so

Wk = Ask = Sk - Sk-l; So = 0

Then

S( h )A hskZk = I+ hi'k)ASk +
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and the identity EakZk :E W k'0 k can be written as

a k 1 h"k)Ask +~~

Write, assuming am O,

L ak kAsk= 2 Sk('kIk - ck+llk+l)
1 1

define A+ k  a k - k±l ' so getting the equation

S [A.[( + h hak ]I: Zk

The identity will follow if

hak 1
A+[(l + hk)dak] + T = ' k = 1,..., m-l

or

KA .(l + h Pk)ak] + hak 1, k = 1, ... , m-i (I1.7)

Denote qk= 1 + huk and look at the homogeneous equation ( m = 0)

KA,+(qka k ) + hak = 0, k = 1, ... , m-1

'i
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The solution Bk to this equation has two uses: First, write

akk j st[&. (q~Bk) + +8,~q

1 1

or

S t .kZk  
(11.8)a =B(q, + h

Since wk + Ask2 Eq. (11.8) gives wk in terms of Zk. The other use of the

sequence is this: Let k = akk then note that for any two sequences

Xk' Yk

A+XkYk = XkYk - Xk+i k+l

= Xkt+Yk + Yk+1A+Xk

Thus

kA+(qk~kok) + hckak

ka= kk k + kqk+aBk+IA+ak + hakBk

=kq k+lak+I a +ck "

To solve Eq. (11.7), then, we need to solve

L4
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k qk+l ak+l +k

or

A+ k -kqk+l Bk+l

To solve for k write

+ qkk)' +h k = 0
k

or

(qk + ) = qk+l k+l

or for q k > 1,

k-i
k- (qj +
1 Jak : 1 k

IT q j
2

Define Ik k , .. , m- by H% = 1

k
k: (1 + jqj)

Since a1 is arbitrary, use the solution

Ik-i
k -qk
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Then

a hq (I + h

z + ,q k

so Eq. (11.8) becomes

s Zk

2 =k-

Going back to the ak sequence, we have

+ = k k ]  -
+ k k k+l ' T~1 ki

leading to the solution

m-1

= 't = I kIk

and finally, to,

m-1

ak T jTI.k k

thus completing the work.

The wk given by the above are not easy to compute by hand; a

short computer program was written to calculate them. The question then

came up of whether the simple approximate solution given in Subsection 3.2.
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was close enough to the complicated solution given above so that it could

be used with almost equal effectiveness.

The first criterion we computed was average percentage of difference;

i.e., if w is the above solution at h and is the approximate solution,

define 59

W k <

Avg. % Diff. ; 100 x 59

!wk

This is tabulated below.

Average Percentage of Difference

h 0.7 0.6 0.5 0.4 0.3 0.2 ;D.1 .0 -0.1

: Diff. 14.6 10.9 10.5 9.9 8.9 7.4 1.9 .F, -4.

The approximation and the solution given above diverge for necati ,e

h. This may be due to the fact that the second term of Var(&), qhich ;we

discarded, becomes significant for negative h.

To gauge the effects of this difference we ran both solutions at

h 0.5 and h = 0.25 as estimators of X(l) . The comparison is given below.
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Comparison of Ratios

b '  .5 .75 1.0 1.25 1.50 1.75 2.0

Exact .5 .46 1.12 2.47 3.69 4.73 5.60 6.35 Weibull
Approx .5 .44 1.09 2.33 3.46 4.42 5.21 5.90 Weibull

Exact .25 .64 .56 1.39 2.23 2,96 3.56 4.10 Weibull
Approx .25 .61 .56 1.34 2.12 2.80 3.36 3.85 Weibull

Exact .5 .54 .37 .42 .88 1.37 1.81 2.21 Lognormal
Approx .5 .52 .36 .41 .84 1.30 1.71 2.07 Lognormal

Exact .25 .59 .52 .35 .43 .70 .98 1.24 Lognormal
Approx .25 .56 .50 .34 .43 .68 .94 1.19 Lognormal

These are close, and the biases are equally close. Thus, for long-

tailed distributions, which is the only solution in which the linear

model produces effective estimators, the approximate solution probably

can be substituted for the exact solution without a y deterioration in

performance.
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